Quantitative Research Design: Fitting the Method to the Question

Deborah Eldredge, PhD, RN Director, Nursing Quality, Research & Magnet Oregon Health & Science University Healthcare

Margo A. Halm, RN, PhD, ACNS-BC, FAHA Director, Nursing Research, Education & Magnet Salem Hospital

Objectives

- Describe how research designs differ depending on the questions being asked.
- Identify concepts of bias, threats to validity, strengths, and limitations as related to observational designs
- Identify concepts of bias, threats to validity, strengths, and limitations as related to experimental designs

SCIENCE

- Basic aim of SCIENCE is to explain natural phenomena with generalizable knowing
 - Identify / Understand
 - Describe
 - Explain
 - Predict
 - Control

Research design

- Research design is an attempt limit variability and minimize complexity – Control
- Well-designed research increases chances that findings are real
 - Generalizable
- Well-designed research takes time, planning, and resources
 - and well-designed human science research takes even more of all

Research Process

Research Process

Key concepts in measurement

Reliability

- consistency; the likelihood that you'll see the same results from subjectsubject, or within the same subject over time.
- Reduce error variance
- Validity
 - the degree to which the investigator is measuring/describing the intended phenomenon

Key concepts in design

Internal validity

 the likelihood that the results obtained in a study are due to the treatment, and not to some other factor. Good research designs = strong internal validity

External validity

 Aspects of design that make it more likely the results from one study can be applied to a different sample in a different setting. Similar to generalizability.

Key concepts

- Bias
 - Anything that could distort the results of the study, reducing the likelihood that the findings are "true."
 - Different kinds of bias can reduce internal or external validity

Research designs

- Task of the investigator is to maximize internal and external validity
 - To the extent possible, eliminate or account for possible sources of bias
 - Lack of internal validity=lack of confidence in the result
 - Strength of the evidence
- Choice of design is contingent upon
 - Study question
 - Ethics and pragmatics

What do levels indicate?

- Increasing probability that results reflect some objective reality
 - Limit investigator-induced bias in measuring intervention or outcome
 - Reduce threats to internal validity

Generation of practice knowledge

- Exploratory Qualitative
- Descriptive Correlational, regression, time series, path model
- Quasi-experimental
- Experimental
- Clinical trials Meta-analysis
- Evaluation research

Efficacy, utility, costbenefit, feasibility

Utilization in practice

Practice dissemination

Design dichotomies

- Qualitative vs. quantitative
- Descriptive vs. analytical
- Experimental/ quasi-experimental vs. non-experimental
- Hypothesis-generating vs. hypothesis testing
- Cross-sectional vs. longitudinal
- Retrospective vs. prospective
- Observational vs interventional Design to match question being asked

Nursing research designs

- Observational: Identify, describe and explain characteristics of
 - Nurses
 - -Patients
 - Processes
- Experimental
 - Evaluate interventions (predict / control)
 - Establish causation (predict / control)

Observational Designs: Identify, Describe, Explain

- Identify subjects
- Observe & record characteristics
- Data readily obtained
- Subject to bias:

Selection	How subjects selected or assigned to groups
Measurement	How outcomes measured
Performance	How subjects exposed to factor of interest
Attrition	<i>How participants lost (dropout, non-response, withdrawal, protocol deviators), creating groups unequal in regard to exposure &/or outcome</i>

DESCRIPTIVE STUDIES

Measure and report on:
 Selected subject characteristics

- Relationships between characteristics

Case Report/Case Series Survey Designs Case Control Cohort

Case Report/Case Series

- Identify and describe an unusual patient care situation
- Retrospective or prospective
 Includes patient presentation, interventions, outcomes
 - Identifies patterns; raises awareness
- <u>Example</u>: Pyelonephritis and urosepsis in pregnancy

Case Report/Case Series

Strengths

- Relatively inexpensive to design and analyze
- Describes phenomena as they naturally occur
- Initial step in understanding phenomena

Limitations

- No causation can be inferred
- Minimal control over threats to internal & external validity
 - ♦ Sample
 - Non-random assignment / selection bias

Survey Research

Describe or explain almost anything!!!
 Nurse satisfaction surveys
 Behavioral health risk surveys

 Survey results can be used as measures of predictor or outcome variables

 Cross-sectional vs. longitudinal (one moment in time vs. series of observations over time)

Survey Research

Strengths

- Flexible
- <u>Broad</u> in scope: Can survey for anything

Limitations

- <u>Data</u>: Superficial; self-report
- Information on how survey developed is important
- <u>Repeated measures</u>
 - Testing effects
 - Attrition (dropouts)

Survey Research

Internal Validity

- Reliability of measurement
 - Response biases in surveys and questionnaires
 - e.g., Selective recall, social acquiescence
 - Reporting errors in data sets -Uploading results

External Validity

- Sampling biases
- Return rates
 70% gold standard (difficult to obtain)

Case Control & Cohort

- Look at relationships between predictors (independent variables) and outcomes (dependent variables)
- Intervention/exposure = Independent variable
- +/- outcome = Dependent variable

Case Control Study

Usually retrospective

Depends on presence/absence of outcome

Example:

- 1. Identify patients who fell during hospital stay, versus those who did not (controls)
- 2. Analyze groups for presence of predictors that explain fall risk
 - Age
 - Mobility problems (balance, weakness)
 - Confusion/delirium
 - Medications
 - Urgency

Cohort Study

Usually prospective

Cohort depends on presence/absence of predictor

Example:

1. Identify cohort of patients at risk for HAPU Hospitalized patients >65

2. Follow cohort to see who develops HAPU

3. Analyze for influence of + or – of predictors

Case Control & Cohort Studies

Strengths

- Useful when outcome of interest is rare, or takes a long time to develop
- Useful for initial studies
 - Case control & crosssectional studies generally require small samples and are relatively inexpensive

Limitations

- Exposures not manipulated
- Does NOT establish causality – Only levels of risk and association between risk and outcome

Case Control & Cohort Studies

Internal Validity

- Reliability of measures for predictor & outcome variables

 e.g., Inter-rater reliability
- Quality of recorded data on exposures & outcomes

External Validity

- Defining cases & controls
 - Careful selection criteria
- Exhausting all possible predictors

Design & Methods for Getting Started

- Descriptive studies
- Chart review & other measurements

 Need precise variable definition
 Inter-rater reliability
 Data limited by what was recorded
- What about this...
 - Discovering something you weren't looking for

Experimental Designs

- Identify subjects
- Place in common context
- Intervene
- Observe effects of intervention
- Hard to do well
- Answer narrow question definitively

Pre- & post-test intervention trial

May or may not involve control group
 – Participants rarely randomized

- Prominence in nursing studies

 Example: most studies involving educational interventions
 - More likely to estimate effectiveness than efficacy

Randomized clinical trials

- Gold standard to predict or control
 - Participants randomized to intervention or control
 - All parties blinded (participant, investigator, analyst)
 - Presence of control group similar in every way except for intervention

Quasi-Experimental Design

- When it is not possible to meet the gold standard to predict or control
 - Participants randomized to intervention or control
 - All parties blinded (participant, investigator, analyst)
 - Presence of control group similar in every way except for intervention

Strengths and limitations

Strengths

- Least opportunity for bias
- Greatest likelihood that outcomes are caused by intervention
- Limitations
 - Dependent on integrity of investigator for randomization
 - Fidelity to intervention critical
 - Measures efficacy; may not translate directly to "real world."

Internal and external validity

- Internal validity
 - -Extent to which investigator is blinded
 - Integrity of control
 - Effective randomization re: hypothesized covariates
- External validity
 - Sampling biases
 - Generalizability limited by complexity of intervention and sample selection

Criteria for causation

- Preponderance of the evidence
- Need reasonable explanation for relationships
- Need consistency across time and populations
- Caution: the basic science may change!

Design & methods for getting started

- 'Quick' intervention
 - -Time for intervention to work
 - Completeness of intervention
 - Influences external to research project

Criteria of (good) Research Design

- Answer the research question
- Does the design test the hypotheses?
- Research question / hypotheses need to be consistent with research design
- Caution: lack of congruence

Criteria of (good) Research Design

- Control extraneous independent variables
- Does the design adequately control independent variables?
- Solution: RANDOMIZE
 - Select participants at random
 - -Assign participants to groups at random
 - Assign experimental treatments to groups at random

Criteria of (good) Research Design

- Generalizability
- Can we generalize the results of a study to other participants, other groups, and other conditions?
 - Basic research (add knowledge to field of study)
 - Applied research (generalizability is primary concern)

Two sources of research weakness

- Intrinsically poor designs

 Inability to manipulate independent variables
 - -Lack of power to randomize
 - Risk of improper interpretation
- Good designs, poorly executed

Research and design

- Research is basic work of science
- Careful design helps reduce bias

 Improves internal and external validity
- Contributes to the scientific basis for nursing practice

Research design

- There is no perfect design!
- The choice of design depends on the question and pragmatics of the project
- The investigator's responsibilities are to:
 - Conduct the study ethically
 - Report results honestly
 - Identify limitations to study, both design and conduct

References

- Craig, J.V. & Smyth, R.L. (2007). *The Evidencebased Practice Manual for Nurses*. Churchill Livingstone, Edinburgh
- Guyatt, G., Gutterman, D., Baumann, M. H., Addrizzo-Harris, D., Hylek, E. M., Phillips, B., et al. (2006). Grading strength of recommendations and quality of evidence in clinical guidelines. *Chest*, 129, 174-181.
- Guyatt, G., Vist, G., Falck-Ytter, Y., Kunz, R., Magrini, N., & Schunemann, H. (2006). An emerging consensus on grading recommendations? *ACP Journal Club*, 144, A8-A9.

References

- Flew, A. (1979) A Dictionary of Philosophy (rev. 2nd Ed.). New York: St. Martins Press
- Pedhazur, E.J. and Schmelkin, L. P. (1991). *Measurement, Design, and Analysis: An Integrated Approach*. Lawrence Erlbaum Associates, New Jersey
- Polit, D. F., & Hungler, B. P. (1999). Nursing research: Principles and methods (Sixth ed.). Philadelphia: Lippincott.
- Valanis, B. (1999) *Epidemiology in Health Care*. Stamford, CT: Appleton & Lange